МГУ имени М.В.Ломоносова
Московский государственный университет
имени М.В.Ломоносова
 

 ЧИСЛЕННЫЕ МЕТОДЫ ОБРАБОТКИ 


Experimental data
 
 


background

    Все новости.


      новое - от  17.10.2017 :





В.И.Арнольд. "Задачи для детей от 5 до 15 лет". М., изд-во МЦНМО,2004:


1. У Маши не хватало для покупки букваря семи копеек, а у Миши одной копейки. Они сложились, чтобы купить один букварь на двоих, но денег все равно не хватило. Сколько стоил букварь?

2. Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?

3. Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?

4. Из бочки вина перелили ложку его в (неполный) стакан с чаем. А потом такую же ложку (неоднородной) смеси из стакана — обратно в бочку. Теперь и в бочке, и в стакане имеется некоторый объем посторонней жидкости (вина в стакане, чая в бочке). Где объем посторонней жидкости больше: в стакане или в бочке?

5. Из А в В и из В в А на рассвете (одновременно) вышли навстречу друг другу (по одной дороге) две старушки. Они встретились в полдень, но не остановились, а каждая продолжала идти с той же скоростью, и первая пришла (в В) в 4 часа дня, а вторая (в А) в 9 часов вечера. В котором часу был в этот день рассвет?

7. У Васи сестер на 2 больше, чем братьев. На сколько у Васиных родителей больше дочерей, чем сыновей?

8. В Южной Америке есть круглое озеро, где 1 июня каждого года в центре озера появляется цветок Виктории Регии (стебель поднимается со дна, а лепестки лежат на воде, как у кувшинки). Каждые сутки площадь цветка увеличивается вдвое, и 1 июля он, наконец, покрывает все озеро, лепестки осыпаются, семена опускаются на дно. Какого числа площадь цветка составляет половину площади озера?

9. Волк, коза и капуста должны быть перевезены мужиком через реку в лодке, но лодка столь мала, что он может брать с собой только один из трех грузов. Как перевезти все три груза (волка нельзя оставлять наедине с козой, а козу —с капустой) через реку?

10. Улитка за день залезает вверх по столбу на 3 см, а за ночь, уснув, нечаянно спускается на 2 см. Высота столба 10 м, а наверху лежит вкусная для улитки конфета. Через сколько дней улитка ее достанет?

11. Охотник прошел от своей палатки 10 км на юг, повернул на восток, прошел прямо на восток еще 10 км, убил медведя, повернул на север и, пройдя еще 10 км, оказался у палатки. Какого цвета был медведь и где это все было?

12. Сегодня в 12 часов дня был прилив. Когда он будет (там же) завтра?

13. На книжной полке рядом стоят два тома Пушкина: первый и второй. Страницы каждого тома имеют вместе толщину 2 см, а обложка — каждая — 2 мм. Червь прогрыз (перпендикулярно страницам) от первой страницы первого тома до последней страницы второго тома. Какой путь он прогрыз? [Эта топологическая задача с невероятным ответом — 4 мм — совершенно недоступна академикам, но некоторые дошкольники легко справляются с ней.]

15. Сколькими способами можно разбить число 64 на 10 натуральных слагаемых (целых, больше или равных 1), наибольшее из которых равно 12?

17. От города А до города В расстояние 40 км. Два велосипедиста выехали из А и из В одновременно и навстречу друг другу, один со скоростью 10 км/час, а другой — 15 км/час. Муха вылетела с первым из А со скоростью 100 км/час, долетела до второго, села ему на лоб и полетела обратно к первому, села ему на лоб, вернулась ко второму и так далее, пока они не столкнулись лбами и не раздавили ими муху. Сколько километров она пролетела всего?

19. Гусеница хочет проползти из одного угла кубической комнаты (на полу слева) в противоположный (на потолке справа). Найти кратчайший путь такого путешествия по стенам комнаты.

20. Имея два сосуда объемом 5 литров и 3 литра, отмерь один литр (получи его в одном из сосудов).

21. В семье пять голов и четырнадцать ног. Сколько из них людей, а сколько собак?

22. На сторонах треугольника ABC во внешнюю сторону от него построены равносторонние треугольники (со сторонами АВ, ВС, СА). Доказать, что их центры образуют равносторонний треугольник.

23. Какие многоугольники могут получиться при пересечении куба плоскостью? Может ли получиться пятиугольник? Семиугольник? Правильный шестиугольник?

24. Через центр куба провести прямую так, чтобы сумма квадратов расстояний восьми вершин куба от нее была а) максимальной, б) минимальной (по сравнению с другими прямыми).

25. Прямой круговой конус пересечен плоскостью по замкнутой кривой. Вписанные в конус шары касаются плоскости сечения в точках А для одного и В для другого шара. Найти на линии сечения точку С так, чтобы сумма расстояний СА + СВ была а) наибольшей, б) наименьшей.




opening 15.11.2009    © math-lab.ru    All rights reserved.

  Яндекс цитирования
  Rambler's Top100
 
  Яндекс.Метрика
  Locations of visitors to this page